Causal inference is perhaps the most important form of reasoning in the sciences. A panoply of disciplines, ranging from epidemiology to biology, from econometrics to physics, make use of probability and statistics in order to infer causal relationships. However, the very foundations of causal inference are up in the air; it is by no means clear which methods of causal inference should be used, nor why they work when they do. This book brings philosophers and scientists together to tackle these important questions. The papers in this volume shed light on the relationship between causality and probability and the application of these concepts within the sciences. With its interdisciplinary perspective and its careful analysis, Causality and Probability in the Sciences heralds the transition of causal inference from an art to a science.