ShopSpell

CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination [Hardcover]

$87.99     $109.99   20% Off     (Free Shipping)
100 available
  • Category: Books (Science)
  • Author:  Spannagel, Simon
  • Author:  Spannagel, Simon
  • ISBN-10:  3319588796
  • ISBN-10:  3319588796
  • ISBN-13:  9783319588797
  • ISBN-13:  9783319588797
  • Publisher:  Springer
  • Publisher:  Springer
  • Binding:  Hardcover
  • Binding:  Hardcover
  • Pub Date:  01-Apr-2017
  • Pub Date:  01-Apr-2017
  • SKU:  3319588796-11-SPRI
  • SKU:  3319588796-11-SPRI
  • Item ID: 100732510
  • List Price: $109.99
  • Seller: ShopSpell
  • Ships in: 5 business days
  • Transit time: Up to 5 business days
  • Delivery by: Nov 30 to Dec 02
  • Notes: Brand New Book. Order Now.

This thesis addresses two different topics, both vital for implementing modern high-energy physics experiments: detector development and data analysis. Providing a concise introduction to both the standard model of particle physics and the basic principles of semiconductor tracking detectors, it presents the first measurement of the top quark pole mass from the differential cross-section of tt+J events in the dileptonic tt decay channel.


The first part focuses on the development and characterization of silicon pixel detectors. To account for the expected increase in luminosity of the Large Hadron Collider (LHC), the pixel detector of the compact muon solenoid (CMS) experiment is replaced by an upgraded detector with new front-end electronics. It presents comprehensive test beam studies conducted to verify the design and quantify the performance of the new front-end in terms of tracking efficiency and spatial resolution. Furthermore, it proposes a new cluster interpol
ation method, which utilizes the third central moment of the cluster charge distribution to improve the position resolution.

The second part of the thesis introduces an alternative measurement of the top quark mass from the normalized differential production cross-sections of dileptonic top quark pair events with an additional jet. The energy measurement is 8TeV. Using theoretical predictions at next-to-leading order in perturbative Quantum Chromodynamics (QCD), the top quark pole mass is determined using a template fit method.

Introduction to Particle Physics at Hadron Colliders.- The CMS Experiment at the LHC.- Basic Concepts of Semiconductor Tracking Detectors.- The CMS Pixel Detector for Phase I.- Simulation of CMS Pixel Detector Modules.- The pixar Data Acquisition and Calibration Framework.- ?Test Beams at the DESY-II Synchrotron.- Qualication of the Phasl

Add Review