This book discusses the implementation of digital circuits by using MCML gates. Although digital circuit implementation is possible with other elements, such as CMOS gates, MCML implementations can provide superior performance in certain applications. This book provides a complete automation methodology for the implementation of digital circuits in MCML and provides an extensive explanation on the technical details of design of MCML. A systematic methodology is presented to build efficient MCML standard-cell libraries, and a complete top-down design flow is shown to implement complex systems using such building blocks.
Introduction.- Analysis of MOS Current-Mode Logic Circuits.- Design of MOS Current-Mode Logic Cells.- Design Methodology for MCML Standard Cells.- Design Automation for Differential Circuits.- Design Example I : Low-Noise Encoder Circuit for A/D Converter.- Design Example II : High-Speed Multiplexer.- Design Example III : Grain-128a Stream Cipher.- Design Example IV: DPA Resistant Processor.
St?phane Badel has received his Electrical Engineering degree from Ecole d'ing?nieurs de Gen?ve in 1999, his M.Sc. degree from Swiss Federal Institute of Technology in Lausanne (EPFL) in 2003, and his Ph.D. degree also from EPFL in 2008. He has worked as mixed-signal design engineer at Icera Semiconductor, and at NVIDIA. Currently, he is working as a Physical Design Engineer at Huawei Technologies.
Can Baltac1 received the B.S. degree in Electronics Engineering from Middle East Technical University, Ankara, Turkey and M.S. degree in Electrical Engineering from Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland in 2010 and 2013, respectively. He is currently studying towards his PhD degree at the Swiss Federal Institute of Technology in Lausanne (EPFL). His research interests include self-heating effects in high performance analog and digital circuits impl“ń