Item added to cart
From the reviews: Haus book provides numerous insights on topics of wide importance, and contains much material not available elsewhere in book form. [...] an indispensable resource for those working in quantum optics or electronics. Optics & Photonics News
Electromagnetic Noise and Quantum Optical Measurements is the result of more than 40 years of research and teaching. The first three chapters provide the background necessary to understand the basic concepts. Then shot noise and thermal noise are discussed, followed by linear noisy multiparts, the quantum theory of waveguides and resonators, an analysis of phase-insensitive systems, detection, photon probability distributions, solitons, phase-sensitive amplification, squeezing, the quantum theory of solitons and squeezing, and quantum non-demolition measurements. Rich appendices give additional information. The book is intended for graduate students and scientists in physics and engineering. Numerous problems and selected solutions will help readers to deepen their knowledge.1. Maxwells Equations, Power, and Energy.- 1.1 Maxwells Field Equations.- 1.2 Poyntings Theorem.- 1.3 Energy and Power Relations and Symmetry of the Tensor.- 1.4 Uniqueness Theorem.- 1.5 The Complex Maxwells Equations.- 1.6 Operations with Complex Vectors.- 1.7 The Complex Poynting Theorem.- 1.8 The Reciprocity Theorem.- 1.9 Summary.- Problems.- Solutions.- 2. Waveguides and Resonators.- 2.1 The Fundamental Equations of Homogeneous Isotropic Waveguides.- 2.2 Transverse Electromagnetic Waves.- 2.3 Transverse Magnetic Waves.- 2.4 Transverse Electric Waves.- 2.4.1 Mode Expansions.- 2.5 Energy, Power, and Energy Velocity.- 2.5.1 The Energy Theorem.- 2.5.2 Energy Velocity and Group Velocity.- 2.5.3 Energy Relations for Waveguide Modes.- 2.5.4 A Perturbation Example.- 2.6 The Modes of a Closed Cavity.- 2.7 Real Character of Eigenvalues and Orthogonality of Modes.- 2.8 Electromagnetic Field Inside lÓàCopyright © 2018 - 2024 ShopSpell