Item added to cart
The purpose of this publication is to introduce a new, simpler and more effective way in which to interpret pharmaceutical aerosol particle size data from orally inhaled products (OIPs). Currently, the compendial and regulatory requirements dictate the need for measurements by full resolution multi-stage cascade impactor (CI), a process that is demanding for the operator, time consuming, prone to experimental error, and challenging for method transfers from one laboratory to another. Furthermore, we shall show that the current practice of reducing information from mass-weighted aerodynamic particle size distribution (APSD) measurements through the use of CI stage groupings is not the most effective decision-making tool for OIP quality control (QC) in comparison with newly introduced, mutually-independent efficient data analysis (EDA) metrics that can be derived either from full resolution or abbreviated impactor measurements (AIM).Offering a simpler way to interpret aerosol particle size data from orally inhaled products, this book describes mutually-independent efficient data analysis (EDA) metrics that can be derived from full resolution or abbreviated impactor measurements (AIM).
Introduction.- Current Approaches To APSD Measurement of OIPs Based on Inertial Impaction.- Physical Causes of APSD Changes in Aerosols From OIPs and their Impact on Cascade Impactor Measurements.- Good Cascade Impactor Practices.- The AIM and EDA Concepts: Why they are Needed.- Product Lifecycle Approach to Cascade Impaction Measurements.- Theoretical Basis for the EDA Concept.- Performance Characterization of EDA and its Potential to Improve Decision Making in Product Batch Release.- Verification of the EDA Concept through an Assessment of Theoretical Failure Modes, Failure Mode Analysis and Case Studies with Real Data.- Validating AIM-Based Instrumentation and Associated Measurement Techniques.- The Regulatory and Compendial Acceptance Pathways for AIM and EDA.- Applying the AlC%
Copyright © 2018 - 2024 ShopSpell