Item added to cart
Here is a fascinating text that integrates topics pertaining to all scales of the MHD-waves, emphasizing the linkages between the ULF-waves below the ionosphere on the ground and magnetospheric MHD-waves. It will be most helpful to graduate and post-graduate students, familiar with advanced calculus, who study the science of MHD-waves in the magnetosphere and ionosphere. The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on the Earth and in Space.
Acknowledgments. Preface. Introduction. 1 PARTIALLY IONIZED PLASMA. 1.1 Introduction. 1.2 Comments on the plasma dynamics. 1.3 Electromagnetic field equations. 1.4 Dielectric permeability and conductivity. 1.5 Dispersion equation. 2 ELECTRODYNAMIC PROPERTIES OF SPACE. 2.1 The solar wind and the Earth's magnetosphere. 2.2 Ionosphere. 2.3 Atmosphere. 2.4 Summary. 3 ULF-WAVES ON THE GROUND AND IN SPACE. 3.1 Introduction. 3.2 The physical pattern. 3.3 ULF-waves on the ground and in space. 4 MAGNETOHYDRODYNAMIC WAVES. 4.1 MHD equations. 4.2 Homogeneous plasma. 4.3 Inhomogeneous plasma. 5 HYDROMAGNETIC RESONATORS. 5.1 Model and basic equations. 5.2 Dungey's problem. 5.3 Explicit eigenmodes. 5.4 Field-Line Resonance (FLR) frequencies. 5.5 FLR-equations. 5.6 FLR-field structure. 5.7 Global and surface oscillation modes. 5.8 Uncoupled Alfv?n and FMS-modes. 5.9 Coupling of Alfv?n and FMS-waves. 5.10 Summary. 6 FLR IN PLASMA CONFIGURATIONS. 6.1 Introduction. 6.2 2D inhomogeneous plasma. Uniform magnetic field. 6.3 MHD-waves in a curvilinear magnetic field. 6.4 FLR in the dipole geomagnetic field. 6.5 Numerical simulation. 6.6 Summary. 7 MHD-WAVES IN LAYERED MEDIA. 7.1 Introduction. 7.2 Model and basic equations. 7.3 Atmospheric and ground fields. 7.4 `Thin' ionosphere. 7.5 Homogeneous magnetosphere. 7.6 Propagation along a meridian. 7.7 Small-scale perturbations. 7.8 Numerical examples. 7.9 Discussion. 8 PROPAGATION of MHD-BEAMS. 8.1 Introduction. 8.2 Coordinate dependencies. 8.3 Small distlCCopyright © 2018 - 2024 ShopSpell