Introduces students to the key research topics within modern solid state physics with the minimum of mathematics.Providing an up-to-date and lucid presentation of phenomena across modern advanced-level solid state physics, this new edition builds on a basic understanding to introduce students to the key research with the minimum of mathematics. It covers cutting-edge topics, including electron transport and magnetism in solids, topological insulators and strongly correlated electrons.Providing an up-to-date and lucid presentation of phenomena across modern advanced-level solid state physics, this new edition builds on a basic understanding to introduce students to the key research with the minimum of mathematics. It covers cutting-edge topics, including electron transport and magnetism in solids, topological insulators and strongly correlated electrons.Providing an up-to-date and lucid presentation of phenomena across modern advanced-level solid state physics, this new edition builds on an elementary understanding to introduce students to the key research topics with the minimum of mathematics. It covers cutting-edge topics, including electron transport and magnetism in solids. It is the first book to explain topological insulators and strongly correlated electrons. Explaining solid state physics in a clear and detailed way, it also has over 50 exercises for students to test their knowledge. In addition to the extensive discussion of magnetic impurity problems, bosonization, quantum phase transitions, and disordered systems from the first edition, the new edition includes such topics as topological insulators, high-temperature superconductivity and Mott insulators, renormalization group for Fermi liquids, spontaneous symmetry breaking, zero and finite-temperature Green functions, and the Kubo formalism. Figures from the book and solutions to student exercises are available online at www.cambridge.org/solidstate.1. Introduction; 2. Non-interacting electron gas; 3. BolC.