A comprehensive graduate-level introduction to classical and contemporary aspects of special functions.This book provides a graduate-level introduction to special functions - a very active area of research and application. Emphasis is given to unifying aspects and to motivation, making it ideal for self-study, while its comprehensive coverage of standard and newer topics and its extensive bibliography also make it a valuable reference.This book provides a graduate-level introduction to special functions - a very active area of research and application. Emphasis is given to unifying aspects and to motivation, making it ideal for self-study, while its comprehensive coverage of standard and newer topics and its extensive bibliography also make it a valuable reference.The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlev? transcendents, which have been termed the 'special functions of the twenty-first century'.1. Orientation; 2. Gamma, beta, zeta; 3. Second-order differential equations; 4. Orthogonal polynomials on an interval; 5. The classical orthogonal polynomials; 6. Semiclassical orthogonal polynomials; 7. AsymplC$