ShopSpell

Discrete-Time High Order Neural Control: Trained with Kalman Filtering [Paperback]

$86.99     $109.99   21% Off     (Free Shipping)
100 available
  • Category: Books (Mathematics)
  • Author:  Sanchez, Edgar N., Alan?s, Alma Y., Loukianov, Alexander G.
  • Author:  Sanchez, Edgar N., Alan?s, Alma Y., Loukianov, Alexander G.
  • ISBN-10:  3642096956
  • ISBN-10:  3642096956
  • ISBN-13:  9783642096952
  • ISBN-13:  9783642096952
  • Publisher:  Springer
  • Publisher:  Springer
  • Binding:  Paperback
  • Binding:  Paperback
  • Pub Date:  01-Feb-2010
  • Pub Date:  01-Feb-2010
  • SKU:  3642096956-11-SPRI
  • SKU:  3642096956-11-SPRI
  • Item ID: 100760270
  • List Price: $109.99
  • Seller: ShopSpell
  • Ships in: 5 business days
  • Transit time: Up to 5 business days
  • Delivery by: Dec 01 to Dec 03
  • Notes: Brand New Book. Order Now.

Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among l£ª

Add Review