Complete, rigorous review of Linear Algebra, from Vector Spaces to Normal Forms
Emphasis on more classical Newtonian treatment (favored by Engineers) of rigid bodies, and more modern in greater reliance on Linear Algebra to get inertia matrix and deal with machines
Develops Analytical Dynamics to allow the introduction of friction
As the name implies, Intermediate Dynamics: A Linear Algebraic Approach views intermediate dynamics --Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized normal form ), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta.
Features include:
- A general, uniform approach applicable to machines as well as single rigid bodies
- Complete proofs of all mathematical material. Similarly, there are over 100 detailƒp