A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic
Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * G?del's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas
Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-L?wenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints
At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms.
Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, G?del's completeness theorem, models of Peano arithmetic, and much more.