Item added to cart
1 Global optimization and the Bayesian approach.- 1.1 What is global optimization?.- 1.2 Advantages of the Bayesian approach to global optimization.- 2 The conditions of Bayesian optimality.- 2.1 Introduction.- 2.2 Reduction to dynamic programming equations.- 2.3 The existence of a measurable solution.- 2.4 The calculation of conditional expectations.- 2.5 The one-step approximation.- 2.6 The adaptive Bayesian approach.- 3 The axiomatic non-probabilistic justification of Bayesian optimality conditions.- 3.1 Introduction.- 3.2 The linearity of the loss function.- 3.3 The existence of the unique a priori probability corresponding to subjective preferences.- 3.4 Optimal method under uncertainty.- 3.5 Nonlinear loss functions.- 4 Stochastic models.- 4.1 Introduction.- 4.2 Sufficient convergence conditions.- 4.3 The Gaussian field.- 4.4 Homogeneous Wiener field.- 4.5 A case of noisy observations.- 4.6 Estimation of parameters from dependent observations.- 5 Bayesian methods for global optimization in the Gaussian case.- 5.1 The one-step approximation.- 5.2 Adaptive models.- 5.3 Extrapolation models.- 5.4 Maximum likelihood models.- 5.5 The comparison of algorithms.- 5.6 The Bayesian approach to global optimization with linear constraints.- 5.7 The Bayesian approach to global optimization with nonlinear constraints.- 5.8 The Bayesian approach to multi-objective optimization.- 5.9 Interactive procedures and the Bayesian approach to global optimization.- 5.10 The reduction of multi-dimensional data.- 5.11 The stopping rules.- 6 The analysis of structure and the simplification of the optimization problems.- 6.1 Introduction.- 6.2 Structural characteristics and the optimization problem.- 6.3 The estimation of structural characteristics.- 6.4 The estimation of a simplification error.- 6.5 Examples of the estimates.- 7 The Bayesian approach to local optimization.- 7.1 Introduction.- 7.2 The one-dimensional Bayesian model.- 7.3 Convergence of the local Bayesian algorithm.- 7.4 Gl³$
Copyright © 2018 - 2024 ShopSpell