The first such book devoted exclusively to the MQED theory of long-range intermolecular forces, this resource gives the first presentation of the second quantized Maxwell field formulation of the theory. The coverage includes recently developed non-perturbative approaches for treating a variety of intermolecular interactions. It also provides a comprehensive treatment of discriminatory forces and their subsequent modification by a radiation field. This provides an essential resource for theoretical and physical chemists; atomic, molecular, and optical physicists; as well as biophysicists, materials scientists, and nanochemists.PREFACE.
1 MOLECULAR QUANTUM ELECTRODYNAMICS: BASIC THEORY.
1.1 Background.
1.2 Quantum Description of Matter.
1.3 Electrodynamics and Maxwell Equations.
1.4 Quantization of the Free Electromagnetic Field.
1.5 Interacting Particle–Radiation Field System.
1.6 Multipolar Lagrangian.
1.7 Multipolar Hamiltonian.
1.8 Canonical Transformation.
1.9 Perturbation Theory Solution.
1.10 State Sequence Diagrams.
2 MOLECULAR QUANTUM ELECTRODYNAMICS: FIELD THEORETIC TREATMENT.
2.1 Introduction.
2.2 Nonrelativistic Quantum Field Theory.
2.3 Quantum Canonical Transformation.
2.4 Multipolar Maxwell Fields.
2.5 Minimal-Coupling Maxwell Fields.
2.6 Multipolar Maxwell Fields in the Vicinity of a Source.
2.7 Higher Multipole Moment Maxwell Fields.
2.8 Maxwell Fields of a Diamagnetic Source.
2.9 Electromagnetic Energy Density.
2.10 Poynting’s Theorem and Poynting Vector.
3 INTERMl£Ý