A practical reference on theory and methods of estimating measurement errors and uncertainty for both scientists and engineers in industry and experimental research. Building on the fundamentals of measurement theory, this book offers a wealth of practial recommendations and procedures. It differs from the majority of books in that it balances coverage of probabilistic methods with detailed information on the characterization, calibration, standardization and limitations of measuring instruments, with specific examples from both electrical and mechanical systems. In addition to a general updating to reflect current research, new material in this edition includes increased coverage of indirect measurements, with a new, simpler, more efficient method for this class of measurements.The major objective of this book is to give methods for estimating errors and uncertainties of real measurements: measurements that are performed in industry, commerce, and experimental research. This book is needed because the existing theory of measurement errors was historically developed as an abstract mathematical discipline. As a result, this theory allows estimation of uncertainties of some ideal measurements only and is not applicable to most practical cases. In particular, it is not applicable to single measurements. This situation did not bother mathematicians, whereas engineers, not being bold enough to assert that the mathematical theory of errors cannot satisfy their needs, solved their particular problems in one or another ad hoc manner. Actually, any measurement of a physical quantity is not abstract, but it involves an entirely concrete procedure that is always implemented with concrete te- nical devicesmeasuring instrumentsunder concrete conditions. Therefore, to obtain realistic estimates of measurement uncertainties, mathematical methods must be supplemented with methods that make it possible to take into account data on properties of measuring instruments, the conditionl“*