A systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes.Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.This book introduces in a systematic manner a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important and varied applications in medical diagnostics, image analysis, and machine vision. An early chapter of examples establishes the effectiveness of the new methods and demonstrates how they outperform their parametric counterparts. Inference is developed for both intrinsic and extrinsic Fr?chet means of probability distributions on manifolds, then applied to shape spaces defined as orbits of landmarks under a Lie group of transformations in particular, similarity, reflection similarity, affine and projective transformations. In addition, nonparametric Bayesian theory is adapted and extended to manifolds for the purposes of density estimation, regression and classification. Ideal for statisticians who analyze manifold data and wish to develop their own methodology, this book is also of interest to probabilists, mathematicians, computer scientists and morphometricians with mathematical training.1. Introduction; 2. Examplel³@