Item added to cart
This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Also including a special section of Sunada's recent solution of Kac's celebrated problem of whether or not one can hear the shape of a drum .
?18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schr?dinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 199 ?19 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 220 ?20 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . lCCopyright © 2018 - 2024 ShopSpell