The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included.
This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Chapter 1: The Real and Complex Number SystemsIntroductionOrdered SetsFieldsThe Real FieldThe Extended Real Number SystemThe Complex FieldEuclidean SpacesAppendixExercisesChapter 2: Basic TopologyFinite, Countable, and Uncountable SetsMetric SpacesCompact SetsPerfect SetsConnected SetsExercisesChapter 3: Numerical Sequences and SeriesConvergent SequencesSubsequencesCauchy SequencesUpper and Lower LimitsSome Special SequencesSeriesSeries of Nonnegative TermsThe NumbereThe Root and Ratio TestsPower SeriesSummation by PartsAbsolute ConvergenceAddition and Multiplication of SeriesRearrangementsExercisesChapter 4: ContinuityLimits of FunctionsContinuous FunctionsContinuity and CompactnessContinuity and ConnectednessDiscontinuitiesMonotonic FunctionsInfinite Limits and Limits at InfinityExercisesChapter 5: DifferentiationThe Derivative of a Real FunctionMean Value TheoremsThe Continuity of DerivativesL'Hospital's RuleDerivatives of Higher-OrderTaylor's TheoremDifferentiation of Vector-valued FunctionsExercisesChapter 6: The Riemann-Stieltjes IntegralDefinition and Existence of the IntegralProperties of the IntegralIntegrationl3&