Item added to cart
This new book offers a guide to the theory and methods of progressive censoring. In many industrial experiments involving lifetimes of machines or units, experiments have to be terminated early. Progressive Censoring first introduces progressive sampling foundations, and then discusses various properties of progressive samples. The book points out the greater efficiency gained by using this scheme instead of classical right-censoring methods.
Censored sampling arises in a life-testing experiment whenever the experimenter does not observe (either intentionally or unintentionally) the failure times of all units placed on a life-test. Inference based on censored sampling has been studied during the past 50 years by numerous authors for a wide range of lifetime distributions such as normal, exponential, gamma, Rayleigh, Weibull, extreme value, log-normal, inverse Gaussian, logistic, Laplace, and Pareto. Naturally, there are many different forms of censoring that have been discussed in the literature. In this book, we consider a versatile scheme of censoring called progressive Type-II censoring. Under this scheme of censoring, from a total of n units placed on a life-test, only m are completely observed until failure. At the time of the first failure, Rl of the n - 1 surviving units are randomly withdrawn (or censored) from the life-testing experiment. At the time of the next failure, R2 of the n - 2 -Rl surviving units are censored, and so on. Finally, at the time of the m-th failure, all the remaining Rm = n - m -Rl - . . . - Rm-l surviving units are censored. Note that censoring takes place here progressively in m stages. Clearly, this scheme includes as special cases the complete sample situation (when m = nand Rl = . . . = Rm = 0) and the conventional Type-II right censoring situation (when Rl = . . . = Rm-l = 0 and Rm = n - m).1 Introduction.- 1.1 The Big Picture.- 1.2 Genesis.- 1.3 The Need for Progressive Censoring.- 1.4 A Relatively Unexplored l£ªCopyright © 2018 - 2024 ShopSpell