ShopSpell

Quantum Optomechanics [Hardcover]

$131.99       (Free Shipping)
100 available
  • Category: Books (Science)
  • Author:  Bowen, Warwick P., Milburn, Gerard J.
  • Author:  Bowen, Warwick P., Milburn, Gerard J.
  • ISBN-10:  148225915X
  • ISBN-10:  148225915X
  • ISBN-13:  9781482259155
  • ISBN-13:  9781482259155
  • Publisher:  CRC Press
  • Publisher:  CRC Press
  • Pages:  376
  • Pages:  376
  • Binding:  Hardcover
  • Binding:  Hardcover
  • Pub Date:  01-Oct-2015
  • Pub Date:  01-Oct-2015
  • SKU:  148225915X-11-MPOD
  • SKU:  148225915X-11-MPOD
  • Item ID: 100867970
  • Seller: ShopSpell
  • Ships in: 2 business days
  • Transit time: Up to 5 business days
  • Delivery by: Dec 28 to Dec 30
  • Notes: Brand New Book. Order Now.

Written by leading experimentalist Warwick P. Bowen and prominent theoretician Gerard J. Milburn, Quantum Optomechanicsdiscusses modern developments in this novel field from experimental and theoretical standpoints. The authors share their insight on a range of important topics, including optomechanical cooling and entanglement; quantum limits on measurement precision and how to overcome them via back-action evading measurements; feedback control; single photon and nonlinear optomechanics; optomechanical synchronization; coupling of optomechanical systems to microwave circuits and two-level systems, such as atoms and superconducting qubits; and optomechanical tests of gravitational decoherence.

The book first introduces the basic physics of quantum harmonic oscillators and their interactions with their environment. It next discusses the radiation pressure interaction between light and matter, deriving common Hamiltonians used in quantum optomechanics. It then focuses on the linearized regime of quantum optomechanics before exploring scenarios where the simple linearized picture of quantum optomechanics no longer holds.

The authors move on to hybrid optomechanical systems in which the canonical quantum optomechanical system is coupled to another quantum object. They explain how an alternative form of a hybrid optomechanical system leads to the phenomenon of synchronization. They also consider the impact of quantum optomechanics on tests of gravitational physics.

Quantum Harmonic Oscillators
QUANTISING THE HARMONIC OSCILLATOR
FLUCTUATIONS AND DISSIPATION IN A QUANTUM HARMONIC OSCILLATOR
MODELLING OPEN SYSTEM DYNAMICS VIA QUANTUM LANGEVIN EQUATIONS
QUANTUM LANGEVIN EQUATION WITHIN THE ROTATING WAVE APPROXIMATION

Radiation Pressure Interaction
BASIC RADIATION PRESSURE INTERACTION