I Motivation and Applications.- 1 Introduction and Motivation.- 1.1 The shift model: A review.- 1.2 Generalized shift models.- 1.3 General alternatives.- 2 Applications.- 2.1 Two samples differing in location.- 2.2 Two samples differing in scale.- 2.3 Several samples on the real line.- 2.4 Several samples on the circle.- 2.5 Two samples under type II censoring.- 2.6 The hypothesis of symmetry.- 2.7 The hypothesis of independence.- II Mathematical Foundation.- 3 Two samples differing in location.- 3.1 Kernel estimators of the score function.- 3.2 Projection estimators of the score function.- 3.3 Treatment of ties.- 4 Randomness versus related alternatives.- 4.1 Two samples differing in scale.- 4.2 Several samples on the real line.- 4.3 Several samples on the circle.- 4.4 Two samples under type II censoring.- 5 The hypothesis of symmetry.- 5.1 Linear rank tests.- 5.2 Kernel estimators of the score function.- 5.3 Projection estimators of the score function.- 5.4 Treatment of ties.- 6 The hypothesis of independence.- 6.1 Linear rank tests.- 6.2 Kernel estimators of the score function.- 6.3 Projection estimators of the score function.- 6.4 Treatment of ties.- 7 Appendix.- 7.1 Proof of Theorem 3.0.1.- 7.2 Proof of Proposition 3.2.1.- 7.3 A characterization of monotone functions.- 7.4 Proof of formulae (3.2.32) and (3.2.33).- 7.5 Linear interpolation.- 7.6 Proof of inequality (4.2.22).- 7.7 Proof of Theorem 4.2.2.- 7.8 Proof of Theorem 5.2.1.- 7.9 Proof of inequality (6.2.33).- Tables.- Author Index.- of Program Disks.Springer Book Archives