Design, process, and analyze large sets of complex data in real time
About This Book
- Get acquainted with transformations and database-level interactions, and ensure the reliability of messages processed using Storm
- Implement strategies to solve the challenges of real-time data processing
- Load datasets, build queries, and make recommendations using Spark SQL
Who This Book Is For
If you are a Big Data architect, developer, or a programmer who wants to develop applications/frameworks to implement real-time analytics using open source technologies, then this book is for you.
What You Will Learn
- Explore big data technologies and frameworks
- Work through practical challenges and use cases of real-time analytics versus batch analytics
- Develop real-word use cases for processing and analyzing data in real-time using the programming paradigm of Apache Storm
- Handle and process real-time transactional data
- Optimize and tune Apache Storm for varied workloads and production deployments
- Process and stream data with Amazon Kinesis and Elastic MapReduce
- Perform interactive and exploratory data analytics using Spark SQL
- Develop common enterprise architectures/applications for real-time and batch analytics
In Detail
Enterprise has been striving hard to deal with the challenges of data arriving in real time or near real time.
Although there are technologies such as Storm and Spark (and many more) that solve the challenges of real-time data, using the appropriate technology/framework for the right business use case is the key to success. This book provides you with the skills required to quickly design, implement and deploy your real-time analytics using real-world examples of big data use cases.
From the beginning of the book, we will cover the basics of varied real-time data processing frameworks and technologies. Wel“'