This invaluable resource tells the complete story of failure mechanisms—from basic concepts to the tools necessary to conduct reliability tests and analyze the results. Both a text and a reference work for this important area of semiconductor technology, it assumes no reliability education or experience. It also offers the first reference book with all relevant physics, equations, and step-by-step procedures for CMOS technology reliability in one place. Practical appendices provide basic experimental procedures that include experiment design, performing stressing in the laboratory, data analysis, reliability projections, and interpreting projections.Preface.
1 INTRODUCTION (Alvin W. Strong).
1.1 Book Philosophy.
1.2 Lifetime and Acceleration Concepts.
1.3 Mechanism Types.
1.4 Reliability Statistics.
1.5 Chi-Square and Student t Distributions.
1.6 Application.
2 DIELECTRIC CHARACTERIZATION AND RELIABILITY METHODOLOGY (Ernest Y. Wu, Rolf-Peter Vollertsen, and Jordi Sune).
2.1 Introduction.
2.2 Fundamentals of Insulator Physics and Characterization.
2.3 Measurement of Dielectric Reliability.
2.4 Fundamentals of Dielectric Breakdown Statistics.
2.5 Summary and Future Trends.
3 DIELECTRIC BREAKDOWN OF GATE OXIDES: PHYSICS AND EXPERIMENTS (Ernest Y. Wu, Rolf-Peter Vollertsen, and Jordi Sune).
3.1 Introduction.
3.2 Physics of Degradation and Breakdown.
3.3 Physical Models for Oxide Degradation and Breakdown.
3.4 Experimental Results of Oxide Breakdown.