The product of decades of intensive research into alpine timberlines, this book presents a complete synthesis of current knowledge on the ecophysiology of tree growth and survival on high mountains in Europe. Amid growing realization that high elevation forests have a crucial role to play in protection against natural hazards, this book sets a new standard for research on the ecophysiology of trees growing at the alpine timberline.
Emerging from decades of intensive research into alpine timberlines, Trees at their Upper Limit presents a complete modern synthesis of current knowledge on the ecophysiology of tree growth and survival on high mountains in Europe.
Including chapters on soil properties and the role of mycorrhiza, carbon assimilation and allocation, phytopathogens, and the impact of global change on photooxidative stress, the book builds on Tranquillinis landmark 1979 publication, Physiological Ecology of the Alpine Timberline. By combining new techniques and insights with existing core knowledge the authors explore a range of current hypotheses on tree life limitation to promote a greater understanding of the underlying mechanisms determining the upper timberline.
Amid growing realization that high elevation forests have a crucial role to play in protection against natural hazards, this book represents a timely contribution to the current literature on timberline research. Drawing together more than 25 years of work, this unique book sets a new standard on the ecophysiology of trees growing at the alpine timberline. Edited by field leaders Gerhard Wieser and Michael Tausz, the book will appeal to researchers and advanced students in the fields of botany, ecology and plant ecophysiology, as well as to a wider audience interested in understanding the responses of the timberline ecotone to climatic and demographic change.